
www.manaraa.com

Bayanihan: Building and Studying Web-BasedVolunteer Computing Systems Using JavaLuis F. G. SarmentaMIT Laboratory for Computer Science, Cambridge, MA 02139, USAlfgs@cag.lcs.mit.edu, http://www.cag.lcs.mit.edu/bayanihan/Satoshi HiranoElectrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japanhirano@etl.go.jpAbstractProject Bayanihan is developing the idea of volunteer computing , which seeks toenable people to form very large parallel computing networks very quickly by usingubiquitous and easy-to-use technologies such as web browsers and Java. By uti-lizing Java's object-oriented features, we have built a exible software frameworkthat makes it easy for programmers to write di�erent volunteer computing applica-tions, while allowing researchers to study and develop the underlying mechanismsbehind them. In this paper, we show how we have used this framework to writemaster-worker style applications, and to develop approaches to the problems ofprogramming interface, adaptive parallelism, fault-tolerance, computational secu-rity, scalability, and user interface design.Key words: metacomputing, parallel and distributed computing, network ofworkstations, heterogeneous computing, Java1 IntroductionBayanihan (pronounced \buy-uh-nee-hun") is the name of an old Filipinocountryside tradition wherein neighbors would help a relocating family bygathering under the family's house and carrying it to its new location. Assuch, the word bayanihan has come to mean a spirit of communal unity andcooperation which makes seemingly impossible tasks possible through the con-certed e�ort of many people with a common goal and a sense of unity. ProjectBayanihan seeks to bring the bayanihan spirit to the realm of global computingPreprint submitted to Elsevier Preprint 4 October 1998

www.manaraa.com

by developing the idea of volunteer computing, a form of metacomputing thatseeks to make it easy for even \ordinary people" with little technical knowl-edge to cooperate in solving parallel problems by volunteering their comput-ers' processing power. By minimizing the e�ort and expertise required to addworker nodes, volunteer computing maximizes the potential worker pool sizeand minimizes setup time, making it possible to build world-wide computingnetworks much larger and much more quickly than possible with other formsof metacomputing.The potentials of volunteer computing have been demonstrated by the successof projects like distributed.net, which solved the RSA RC5-56 challengeby employing over 4,000 volunteer teams world-wide, with a combined powerequivalent to that of about 26,000 high-end PCs [5]. Project Bayanihan aimsto take volunteer computing even further by developing web-based volunteercomputing systems where programmers can write platform-independent paral-lel applications in Java and post them on the Web as applets so that volunteersneed only a web browser and a few mouse clicks to join a computation.The possible bene�ts of such web-based volunteer computing systems aremany, ranging from the local to the global [13]. Being much easier and faster toinstall than existing metacomputing systems, these systems can allow more or-ganizations { including companies and universities that have so far lacked thenecessary expertise and time { to pool their existing workstations to provideinexpensive supercomputing facilities for research and teaching. By volunteer-ing their resources to each other, organizations can share and barter tradeprocessing power, creating new possibilities in global collaboration. With theappropriate economic models and mechanisms, barter trading systems caneventually turn into commercial systems where computing power becomes acommodity that people can buy, sell, or trade. When Internet set-top boxesand other information appliances become widely available, volunteer comput-ing principles can also be used to build NOIAs { networks of informationappliances { that take advantage of the under-utilized processing power ofmillions of CPUs sitting idle in users' homes. Ultimately, web-based volunteercomputing has the potential to harness the computing power of the millions ofcomputers on the Internet, and use them towards solving hard computationalproblems for worthy causes that serve the common good of local communitiesand the world.In order to make these potentials a reality, however, many challenging issuesneed to be addressed. In this paper, we identify some of these issues, andpresent a exible software framework that fully exploits Java's object-orientedfeatures to make it easy not only for programmers to build applications, butalso for researchers to study various issues and develop approaches to them.We then show how we have used this framework in these two ways, and discussour results. 2

www.manaraa.com

2 Research IssuesImplementing and deploying real volunteer computing systems involves manyinteresting and challenging technical questions and problems. These include:� Accessibility. In order to maximize the potential work pool and minimizesetup time, a volunteer computing system must be accessible to as manypeople as possible. It must be platform-independent, and must require aslittle technical knowledge from volunteers as possible.� Programmability.A volunteer computing system should provide a exibleand easy-to-use programming interface that allows programmers to imple-ment a wide variety of parallel applications easily and quickly.� Adaptive Parallelism. Since volunteer nodes can have di�erent kinds ofCPUs, and can join and leave a computation at any time, parallel program-ming models for volunteer computing systems must be adaptively parallel.Unlike traditional models, they cannot assume the existence of a �xed num-ber of nodes, or depend on static timing information about the system.� Fault-Tolerance and Computational Security.Like all large-scale meta-computing systems, volunteer computing systems must be able to toleratefaults such as data loss or corruption from random hardware, software, andcommunication failures. Unlike other metacomputing systems, however, vol-unteer computing systems must also be resilient against intentional attacksfrommalicious nodes. These include sabotage by nodes submitting erroneousresults, and spying on con�dential data in commercial volunteer systems.� Performance and Scalability. To be useful, a Java-based volunteer com-puting system must ultimately provide its users with speedups better than,or at least comparable to, other available metacomputing technologies. Po-tential obstacles to this goal include Java's traditionally slow executionspeed, communication overhead, and the lack of server scalability.� User Interface Design. Unlike most conventional parallel systems, volun-teer computing systems need good user interfaces to attract volunteers toparticipate and encourage them to stay. In commercial systems, users wouldalso need good interfaces for submitting jobs and receiving results.3 The Bayanihan FrameworkTo address these issues, we have built a software framework using Java andHORB [12], a distributed object package similar to Sun's RMI, but morewidely compatible. By using HORB to access remote objects transparentlywithout worrying about communication details, we are able to utilize object-oriented techniques to enable programmers to experiment with di�erent ap-proaches to research issues by \mixing-and-matching" objects in various ways.3

www.manaraa.com

Work
GUI

Work
Data

Work
Engine

Watch
GUI

Result
Data

Watch
Engine

Watch
Advocate

Work
Data

Work
Data

Work
Advocate

WorkEn-
gineGUI

Work
Engine

Work
GUI

Work
Data

WatchEn-
gineGUI

Watch
Engine

Watch
GUI

Result
Data

ApplicationChassis

Problem

Problem
Problem

Table

AppletChassis

Result
Data

Result
Data

ApplicationChassis

Clients Server Clients

AppletChassis

Work
Data
Pool

Work
Manager

Watch
Manager

Result
Data
Pool

Work
Advocate

Watch
Advocate

WorkEn-
gineGUI

WatchEn-
gineGUI

Program

HTTP
ServerFig. 1. A Bayanihan system with worker and watcher clients.3.1 System DesignThe Bayanihan framework de�nes a set of interacting components that can beextended and composed to build Bayanihan systems like that shown in Fig.1. A Bayanihan system consists of many clients connected to one or moreservers. A client can either be a Java applet started from a web browser, or aJava application started from the command line. There can be di�erent kindsof clients, such as worker clients for performing computation, and watcherclients for viewing results and statistics. Each client has a chassis, whichcontains an active engine object that communicates with a manager on theserver by exchanging data objects. A work engine, for example, may get workdata objects from the work manager, execute them, and return result dataobjects when they are done. Data objects are generally polymorphic, and knowhow to process themselves. Work data objects, for example, may implementa doWork() method, which the work engine can call. Both the engine and thedata objects have associated GUI objects that provide a user interface.A server typically contains a commodity HTTP server for serving out Javaclass �les, and a command-line Java application that creates one or more prob-lem objects representing di�erent ongoing computations. Each problem has aprogram object which creates and controls manager and data pool objectsof di�erent kinds. Figure 1, for example, shows a program object controllinga work manager which takes care of distributing work and collecting resultsfrom worker clients, and a watch manager which distributes results to watcherclients. Each client connected to the server is represented by an advocate ob-ject, which forwards the client's remote calls to the appropriate manager.4

www.manaraa.com

3.2 Using the FrameworkWriting an application using the Bayanihan framework typically involves �rstselecting and using existing generic library components (shown as shadedboxes in Fig. 1), and then de�ning new application-speci�c components (shownas double-bordered boxes) by extending existing base classes. In this way, ap-plication programmers can write a wide variety of applications that share acommon programming model (e.g., master-worker) by using a common set ofpre-de�ned engine, manager, and data pool objects, and then de�ning di�erentdata, GUI, and program objects according to the application.The Bayanihan framework, however, also allows programmers and researchersto change the generic objects themselves, making it easy for them to im-plement and experiment with new generic functionality and mechanisms.For example, researchers can experiment with performance optimization bywriting work manager objects with di�erent scheduling algorithms. Similarly,replication-based fault-tolerance mechanisms can be implemented by extend-ing (i.e., subclassing) the manager and data pool objects. Programmers caneven implement entirely new parallel programming models by creating newsets of engines, managers, and data pools.By providing extensibility on these two levels { i.e., the applications andgeneric mechanisms levels { the Bayanihan framework makes it easy for pro-grammers and researchers not only to build a variety of applications, but alsoto study the di�erent technical issues in volunteer computing and develop pos-sible approaches to them. In the remainder of this paper, we show how we areusing this two-level exibility, and discuss our current results.4 Building Applications: Programming and User Interface4.1 Programming InterfaceAlthough the Bayanihan framework can support other programming mod-els, all our applications currently use the master-worker model shown in Fig.2. In this model, the server's program object creates a set of managers anddata pools, and �lls the work pool with work data objects in its createWork()method. Volunteer worker clients connected to the server run in a loop, repeat-edly making remote calls to the getWork()method of their respective work ad-vocates. Each advocate passes these calls to the work manager, adding its pro-cess ID (pid) for identi�cation, if desired. In response to a call to getWork(),the work manager returns the next available uncompleted work data object in5

www.manaraa.com

signalDone()

newResult(result)

makeRequest
(request)

addWork(work)

getNewResults(lastSeen)

MWWorkManager MWWatchManager
MW
Work
Pool

MW
Result
Pool

MWWork
Engine

MWWatch
Engine

Server

Clients

createWork()
createNextWork()
createWork(request)

reset()
startNewWorkBatch()

reset()

getNextUnDoneWork()
setDone(workID)

reset()

putResult(result)
reset()

getNewResults(lastSeen)
makeRequest(request)

getWork()
sendDone(result)

getNewResults(lastSeen)
makeRequest(request)

getWork(pid)
sendDone(pid,result)

MWWork
Advocate

MWWatch
Advocate

Work
DatadoWork()

getDoneMsg()

Watch
GUI

makeRequest(request)

MWProgram

Fig. 2. Master-worker model components and methods.the work pool. The work engine runs this work by calling its doWork()method,and gets the result by calling getDoneMsg(). Finally, it sends the result backto the work manager by calling the advocate's sendDone() method.As the work manager receives results from workers, it places the results inthe result pool and marks the corresponding work in the work pool done.When all the work in the pool have been done, the work manager callsits parent program object's signalDone() method. By default, this methodcalls createNextWork(), which sets up the next stage of the computationby re�lling the work pool and calling startNewWorkBatch(). In applications,programmers can override createNextWork() or signalDone() to separateblocks of parallel computation such that one block is guaranteed to be com-puted completely before the other is started. This provides a simple form ofbarrier synchronization. In our factoring application, for example, the programobject has a list of target numbers to be factored, and its createNextWork()method is used to move to the next target while making sure that all theresults from the previous one have been received.Users can view results and statistics and control the computation throughwatcher clients that communicate with the watch manager on the server. Awatcher client's engine runs in a loop, periodically requesting the watch man-ager for a list of new results, and passing these results to the watch GUI,which displays them accordingly. The watcher client also allows the user tosend request objects to the watch manager via the makeRequest() method.The watch manager forwards such requests to the program object, which thenreacts in an application-speci�c way. In our Mandelbrot rendering demo, forexample, the watch GUI (shown in Fig. 3) allows users to select a portion ofthe screen to zoom in or out to, and sends corresponding request objects to the6

www.manaraa.com

Fig. 3. A screen shot of the Mandelbrot worker and watcher applets.server. When the program object receives the request, it responds by callingreset() on the work and watch managers (causing the work and result poolsto be cleared), and calling its own createWork(request) method.To write an application for this model, programmers need only to overrideappropriate methods in the application-speci�c classes MWProgram, WorkData,WorkGUI, ResultData, and WatchGUI. In this manner, we have written a va-riety of applications, including factoring [13], distributed web-crawling [14],RC5-64 decryption, and Mandelbrot rendering. Although seemingly simpleand limited to \embarrassingly parallel" applications, the master-workermodelis actually quite versatile and practical. Our Mandelbrot demo, for example,represents parallel rendering applications used not only in the scienti�c com-munity but in the media industry as well. Other potential applications includesome forms of data mining, Monte Carlo simulations, and any computationsin general where one wants to run the same sequential computation witha large number of varying input combinations. Interestingly, because mostprogrammers today are still accustomed to sequential programming, a lot ofapplications in the real world may actually fall into this category.By extending the appropriate classes, we can also use the master-worker modelto support more complex programming models. For example, we have built asub-framework for parallel genetic algorithms that de�nes a generic work data7

www.manaraa.com

class, GAWork, whose doWork() method calls abstract evaluation, selection,reproduction, and mutation methods on a set of genes, and a generic pro-gram class, GAProgram, whose createNextWork() method redistributes theresulting genes into a new generation of work objects. By writing application-speci�c subclasses of GAWork and GAProgram, we have successfully appliedthe sub-framework to problems such as multivariable function optimization.Currently, we are looking into implementing BSP [15], a growingly popularprogramming model which makes programming more natural by providingremote memory access and message-passing functions, but at the same timemakes implementation easier by specifying that these communication opera-tions only take e�ect at the next global barrier synchronization. It should bepossible to implementBSP on top of the master-work model by de�ning a workengine that allows work objects to make communication requests as they run,and a work manager that collects these requests and performs them during insignalDone() or createNextWork(). In the future, we may also implementa coarse-grain dataow programming model by extending the master-workercomponents to support dependencies between work objects.4.2 User Interface DesignThe modular design of the Bayanihan framework allows application writersto create and use di�erent GUIs as desired, as long as these conform to theinterfaces required by the objects that will use them. Programmers can createapplication-speci�c GUIs to view the same object in di�erent ways, as well asgeneric GUIs to view di�erent objects in the same way. Figure 3 shows someexamples from our Mandelbrot application. On the left is a watcher applet withan application-speci�c MandelWatchGUI object that displays MandelResultblocks. Colored borders corresponding to di�erent workers give users a sensefor the parallelism in the computation. The GUI also allows users to zoom inand out of selected areas, as described in Sect. 4.1. On the right is a workerapplet with a generic work engine GUI that provides simple controls for start-ing, pausing, and stopping the work engine. The window above it is a genericwork GUI that displays status and timing information.5 Developing Generic MechanismsIn addition to making it easy to write applications, the Bayanihan frame-work also makes it easy to develop generic mechanisms. In this section, wedemonstrate this exibility by showing how we have used our framework toinitiate explorations into the issues of adaptive parallelism, fault-tolerance,computational security, performance, and scalability.8

www.manaraa.com

(a) (b)

Work
0

 Done
Work

1
Work

2

Work

3

nextUnDoneWorkMWWorkPool

getWork(pid)

Engine
A

Work 1

Engine
B

Work 2

Engine
C

Work 3

MWWorkManager
getNextUnDoneWork()

Work
0

 Done
Work

1
Work

2

 Done
Work

3

nextUnDoneWorkMWWorkPool

Engine
A

Work 1

Engine
B

Work 1

Engine
C

Work 3

getWork(pid)

getNextUnDoneWork()

MWWorkManagerFig. 4. Simple eager scheduling. (a) C calls getWork() while A and B are doingworks 1 and 2. (b) B �nishes work 2 before A �nishes work 1; B gets work 1 too.5.1 Adaptive ParallelismThe current master-worker programming model implementation employs asimple form of adaptive parallelism sometimes called eager scheduling [4]. Asshown in Fig. 4, each work object has a done ag which is set when a workerreturns the result for that object. The work objects are stored in a circularlist, with a pointer keeping track of the next available uncompleted work. InFigure 4(a), for example, the nextUnDoneWork pointer is pointing to work3 after works 1 and 2 have been assigned to engines A and B respectively.Thus, when engine C calls getWork(), it receives work 3. Since workers callgetWork() as soon as they �nish their current work, faster workers will tendto call getWork() more often, and will thus get a bigger share of the totalwork. In this way, we get a simple form of dynamic load balancing.Moreover, since the list is circular, nextUnDoneWork can eventually wraparound and point to previously assigned but uncompleted work, allowing apiece of work to be reassigned to other workers. This \eager" behavior guar-antees that slow workers do not cause bottlenecks { fast workers with nothingleft to do will simply bypass slow ones, redoing work themselves if necessary.It also provides a basic form of crash-tolerance. In Fig. 4(b), for example, wesee that when B �nishes work 2 and calls getWork(), it receives work 1, whichhas not been marked done because A has crashed (or is simply slow). In thisway, computation can go on as long as at least one processor is still alive. Infact, even if all the processors crash, the computation can continue as soon asa new processor becomes available.Currently, we are also examining other forms of adaptive parallelism that canbe used with the master-worker programming model. For example, we havewritten MultiWorkEngine and MultiWorkManager subclasses that implement9

www.manaraa.com

(a) (b)

p 1-p

SCWorkManager

getNextUnDoneWork(pid)

FTWorkManager

Work
0

 Done
Work

1
Work

2

Work

3

Done

pid result

B 1010

C 0101

A 1010

pid result

D 0001

C 1110

pid result

A 1010

pid result

D 1101

A 1101

FTWorkPool
nextUnDoneWorkm=2, r = 3

Work
0

 Done
Work

1
Work

2

Work

3

Done

getNextUn-
DoneWork(pid)

Spotter
Work

known
result

getSpotter(pid)

pid result

B 1010

pid result

D 1101

FTWorkPool
nextUnDoneWorkm=1, r = 1Fig. 5. Two approaches to fault-tolerance. (a) Majority Voting. (b) Spot-checkinga getMultiWork() function for prefetching multiple packets of work, and haveused them in our distributed web-crawler application to improve performanceby hiding communication latency [14]. We are also using them to study thee�ects of changing work sizes depending on worker speeds.5.2 Fault-Tolerance and Computational SecurityBy extending the eager scheduling work manager and work pool objects asshown in Fig. 5, we have implemented two approaches to protecting againstfaults and sabotage: majority voting and spot-checking.Majority voting works by requiring that at least a majority m of up to rresults from di�erent workers for the same work object have the same value.We implement it by using a new subclass of MWWorkPool, FTWorkPool, wherethe done ag of a work object remains unset as long as a majority agreementhas not been reached and less than r results from di�erent PIDs have beenreceived. If r results are received without reaching a majority agreement, allthe r results are invalidated, and the work object is redone. In Fig. 5(a), forexample, works 0 and 3 have reached a majority agreement and are markeddone, while works 1 and 2 are still considered undone.Spot-checking, shown in Fig. 5(b), works as follows: at the beginning of eachnew batch of work, the SCWorkManager (a subclass of FTWorkManager) ran-domly selects a work object from the work pool and precomputes its result.Then, whenever a work engine calls getWork(), the work manager returnsthis spotter work with probability p. In this way, the work manager can checkthe trustworthiness of a worker by comparing the result it returns with theknown result. If the results do not match, the o�ending worker is blacklisted asuntrustable, and the work manager backtracks through all the current results,10

www.manaraa.com

Table 1Preliminary results from fault-tolerance experiments.
bad
(plus 5
good)

f
(%
bad)

ave
time
(s)

eff
(%)

ave
err
(%)

ave
time
(s)

eff
(%)

ave
err
(%)

ave #
caught

ave
time
(s)

eff
(%)

ave
err
(%)

ave #
caught

0 0 40.4 52 0 23.1 90 0 0 26.2 79 0 0
1 16.7 40.6 51 0 22.7 89 3.0 4.8 26.1 79 1.4 8.4
2 28.6 36.1 48 17 22.8 86 6.0 8.8 27.2 75 2.2 18
3 37.5 32.2 45 30 21.2 86 12 11 28.5 71 3.3 28
4 44.4 28.6 43 41 22.4 84 10 15 29.4 68 3.8 38
5 50.0 26.3 40 50 21.5 80 17 19 30.1 66 4.0 48

7 58.3 21.9 36 62 21.5 77 20 28 31.0 63 5.9 64

ideal time
20.8 s

Voting
(m =2, r =3)

Spot-checking & backtracking, no blacklisting
p =10% p =20%

invalidating any results dependent on results from the o�ending worker.Table 1 shows results from using these two fault-tolerance mechanisms. In thisexperiment, we created a saboteur work engine that always corrupts results ina �xed way. We then ran the Mandelbrot application on the spiral range (seeSect. 5.3.1), with 5 good workers and a varying number of saboteurs. To keepthe pool of saboteurs from being completely eliminated in spot-checking, wedisabled blacklisting, and allowed caught nodes to reconnect after a 1 seconddelay. For each con�guration, we ran 10 rounds, measuring the average runningtime and the average error rate (err). From these, we computed the e�ciencyof each con�guration by �rst multiplying the ideal time (measured with 5good workers, no saboteurs and no fault-tolerance) by the fraction of correctanswers (1 � err), and then dividing the result by the actual running time.This estimates how e�ciently the good workers are being utilized towardsproducing correct �nal answers.Majority voting performed as expected, having an error rate close to the the-oretical expected value of f2(3 � 2f) for 2-out-of-3 voting (where f is thefraction of workers who are saboteurs, and where we assume that saboteursagree on their answers). Although this error rate is large for the values of fshown, it should improve signi�cantly in more realistic situations where f issmall, since it is proportional to f2. The bigger problem with voting is itse�ciency, which, as shown, is at best only about 50% since all the work hasto be done at least twice even when there are no saboteurs. In this respect,spot-checking performed more promisingly. As shown, its e�ciency loss wasonly about p when the number of saboteurs was small, and, thanks to back-tracking, its error rates remained relatively low { even when there were moresaboteurs than good workers. In a real system where blacklisting is enabled, wecan expect even lower error rates. As shown, saboteurs were being caught ata high rate { as many as 64 saboteurs every 31 s in one case. This means that11

www.manaraa.com

unless saboteurs can somehow assume a very large number of false identities(e.g., by faking IP addresses or digital certi�cates) and switch between themdynamically and quickly { a highly unlikely scenario { they would quickly geteliminated, and the error rate would decrease rapidly in time.Although very encouraging, these results are clearly just the beginning of muchtheoretical, experimental, and developmental research that can be done in thisarea. Some research questions include how well spot-checking would work incases where saboteurs do not always give bad answers, and how we can avoidunnecessarily blacklisting \innocent" nodes that just su�er temporary glitches.The most important challenge, however, is that of applying these mechanismsin real applications. Spot-checking may be su�cient for some classes of appli-cations where a small percentage of bad answers may be acceptable, or can bescreened out. These include image rendering, where a few scattered bad pix-els would be acceptable, some statistical computations, where outliers can bedetected and either ignored or double-checked, and genetic algorithms, wherebad results are naturally screened out by the system. Most scienti�c applica-tions, however, assume 100% reliability. For these, it maybe useful to combinevoting, spot-checking, backtracking, and blacklisting to shrink the error rateas much as possible. In the future, we also plan to explore the use of tradi-tional and novel security mechanisms such as checksums, digital signatures,encrypted computation, and dynamic obfuscation [13] to reduce the error ratefurther by making it di�cult for saboteurs to falsify results in the �rst place.5.3 Performance and Scalability5.3.1 Relative Speedup and Absolute PerformanceFigure 6 shows results from running the Mandelbrot application on 17 200MHzPentium Pro machines (1 server and 16 workers) connected by 10Mbit Ether-net, running Windows NT 4.0, Netscape 4.03 on the clients, and Sun's JDK1.1.6 JIT compiler on the server. In this experiment, the target work was an800x800 pixel array, divided into 256 square chunks. To represent di�erentcomputation granularities, we tried four di�erent target ranges with di�er-ent average depths (iterations per pixel). For comparison, ideal speedup wascomputed using the sequential computation speed on a single unpartitioned800x800 array with maximumdepth. As shown, we get good speedup for largegranularities { achieving 91% and 85% e�ciency with 16 workers at depths2048 and 1037, respectively. As the granularity decreases, however, communi-cation and other overheads begin to dominate, limiting e�ciency to only 42%and 1% with 16 workers at depths 198 and 3, respectively. Possible approachesto this problem (which is not unique to Java-based volunteer computing) in-clude reducing overhead, and adaptively changing the problem granularity.12

www.manaraa.com

0

20

40

60

80

100

0 4 8 12 16

workers

sp
ee

d
(1

06 it
er

s/
s)

ideal
speedup

black field
(depth 2048)

spiral
(depth 1037)

whole range
(depth 198)

blue field
(depth 3)Fig. 6. Speedup measurements for the Mandelbrot application.Table 2Absolute Java and C speeds for the Mandelbrot demo on a 200MHz Pentium Pro.

speed (106 iters/s) relative speed
Netscape 4 JIT on NT4.0 6.94 1.00
gcc 1.40 0.20
gcc -Obest 8.86 1.28Table 2 shows a comparison of absolute speeds from sequential Java and nativeC executions of the same Mandelbrot code. Here, we see that with just-in-time(JIT) compilation, Java was actually faster than unoptimized C code, whileonly slightly slower than optimized C code (compiled with djgpp's gcc [8]using the -O option that produced the best result). In another test, our RC5code was about 8 times slower than distributed.net's version. While notas impressive, this is still notable, considering that distributed.net's codewas hand-optimized using processor-speci�c assembly code, while Java doesnot even directly support some necessary operations such as bitwise rotates.5.3.2 Server ScalabilityDue to security restrictions, Java applets can only communicate with the webserver from which they were downloaded. This forces browser-based volunteercomputing networks into star topologies which have high congestion and lim-ited scalability. To address this problem, we have developed a simple volunteerserver system that volunteers with HTTP servers on their own machines candownload and run as a Java application. This application creates a genericVSProblem object which, like other problem objects, contains data pools andmanagers for serving worker and watcher clients. Unlike other problem ob-jects, however, VSProblem's createWork()method does not create new workon its own, but instead gets groups of work data from the main server. Cor-respondingly, its signalDone() method sends the results back to the mainserver, and its createNextWork() method requests more work.13

www.manaraa.com

(a) (b)

slow or congested link

Mandel
Problem

Main Server
HTTP
Server

slow or congested link

Mandel
Problem

Main Server
HTTP
Server

VS
Problem

Volunteer Server
HTTP
Server

VS
Problem

Volunteer Server
HTTP
Server

fast link fast link

Worker
Applet

Worker
Applet

Watcher
Applet

Worker
Applet

Worker
Applet

Worker
Applet

Worker
Applet

Watcher
Applet

Worker
Applet

Worker
AppletFig. 7. Using volunteer servers. (a) Slow links result in unnecessary delays and idling.(b) Volunteer servers help by exploiting communication parallelism and locality.Table 3Running the Mandelbrot application on a volunteer server.

time (s)
with 5 workers

main server
on fast link

main server
on slow link

volunteer server on fast link,
main server on slow link

without watcher 5 198 125
with watcher 5 233 124Figure 7 shows how volunteer servers can help improve a system's performanceand scalability. Consider the scenario shown in Fig. 7(a), where some volun-teers are slowed down by delays due to congestion or some other constraintof the server link (e.g., the server may be in a di�erent country). In such asituation, we can improve overall running time by having the workers con-nect indirectly through volunteer servers with faster links (e.g., uncongestedservers, or servers in their own countries), as shown in Fig. 7(b). Table 3 showsresults from an experiment simulating these scenarios using a 28.8Kbps mo-dem link for the slow link, and 10Mbit Ethernet for the fast link. Note thatalthough the computation took only 5 s with the main server on a fast link, ittook almost 200 s when the main server was placed on a slow link, as workerswere forced to wait idly while the server received their results and sent themnew work through the slow link. To address this problem, we used one volun-teer server to act as a \cache" between the main server and the workers, usingthe fast link as shown in Fig. 7(b) to allow them to work at full speed withoutidling. As shown, this reduced the total running time to 125 s, of which the�rst 5 s were spent by the workers to do the computation, and the remaining120 s by the volunteer server to send all the results back to the server throughthe slow link. The volunteer server also allowed watchers to be added withoutfurther congesting the slow link and slowing down the computation.In general, volunteer servers enable us to overcome congestion and long laten-14

www.manaraa.com

cies by exploiting locality and parallelism in communications. Other potentialapplications of volunteer servers include forming server pools for handling largenumbers of clients, and building networks with non-star topologies.6 Conclusion: Related, Present, and Future WorkProject Bayanihan joins a growing number of projects enabling people to useJava for web-based parallel computing. Most early projects such as ATLAS [3],and JPVM [9], and many newer projects such as IceT [11], Java// [7], Ninet[16], and others [10,1,2], use Java applications. These are less restricted thanapplets, but require some technical expertise and setup e�ort from volunteerusers. Projects like Bayanihan that support the use of applets and web browsersto maximize accessibility seem to be fewer, but have also been growing innumber. Early systems include simple ones such as DAMPP [17], and morecomplex general-purpose ones such as Charlotte [4], and Javelin [6].Project Bayanihan's approach is to maximize exibility by taking full advan-tage of object-oriented techniques. To this end, we have developed a general-purpose framework that allows programmers and researchers to build systemsby simply \mixing-and-matching" interacting objects. We have demonstratedthe e�ectivity of this framework by successfully using it to build a variety ofmaster-worker styles applications, and to initiate explorations into several in-teresting research areas. The results from our explorations give a very positiveoutlook on the feasibility and practicality of volunteer computing systems,and encourage us to do further research in the �eld by writing more applica-tions, implementing more programming models, and developing more genericmechanisms for supporting volunteer computing.AcknowledgementThanks to Eamon Walsh, who wrote the genetic algorithm sub-framework;Lydia Sandon, who wrote the RC5 application; Alex Yip, who helped writethe Mandelbrot GUI; and the Charlotte group, who let us use some math andgraphics code from their own Mandelbrot demo. Thanks to Profs. Steve Wardand Charles Leiserson of MIT, and all the reviewers of this paper, for theirhelpful comments and suggestions. The work presented here was performed atMIT and ETL, and supported in part by MIT, ETL, and DARPA. In addition,Luis Sarmenta was supported in part by the Philippine Department of Scienceand Technology, the MIT Japan Program, and Ateneo de Manila University.The image in Fig. 3 is from Bayanihan, by Carlos \Botong" Francisco, usedwith permission from its owner, Unilab Philippines, Inc.15

www.manaraa.com

References[1] Proc. ACM 1997 Workshop on Java for Science and Engineering Computation(Las Vegas, 1997). http://www.npac.syr.edu/users/gcf/03/javaforcse/acmspecissue/latestpapers.html[2] Proc. ACM 1998 Workshop on Java for High-Performance Network Computing(Palo Alto, 1998). http://www.cs.ucsb.edu/conferences/java98/[3] J.E. Baldeschwieler, R.D. Blumofe, and E.A. Brewer, ATLAS: An Infrastructurefor Global Computing, in: Proc. 7th ACM SIGOPS European Workshop:Systems Support for Worldwide Applications (1996).[4] A. Baratloo, M. Karaul, Z. Kedem, and P. Wycko�, Charlotte: Metacomputingon the Web, in: Proc. 9th Intl. Conf. on Parallel and Distributed ComputingSystems (1996). http://cs.nyu.edu/milan/charlotte/[5] A.L. Beberg, J. Lawson, and D. McNett, http://www.distributed.net/[6] P. Cappello, B.O. Christiansen, M.F. Ionescu, M.O. Neary, K.E. Schauser, andD. Wu, Javelin: Internet-Based Parallel Computing Using Java, in: Proc. ACMWorkshop on Java for Science and Engineering Computation (Las Vegas, 1997).[7] D. Caromel, J. Vayssi�ere, A Java Framework for Seamless Sequential, Multi-threaded, and Distributed Programming, in: Proc. ACM 1998 Workshop onJava for High-Performance Network Computing (Palo Alto, 1998).[8] D. Delorie. djgpp Home Page. http://www.delorie.com/djgpp[9] A. Ferrari. JPVM: Network Parallel Computing in Java, in: Proc. ACM 1998Workshop on Java for High-Performance Network Computing (Palo Alto, 1998).[10] G.C. Fox, ed., Special Issue on Java for Computational Science and Engineering{ Simulation and Modeling, Concurrency: Practice and Experience. 9(6) (1997).[11] P.A. Gray, V.S. Sunderam, IceT: Distributed Computing and Java, in: Proc.ACM Workshop on Java for Science and Engineering Computation (1997).[12] S. Hirano, HORB: Distributed Execution of Java Programs, in: Proc.WWCA'97, Lecture Notes in Computer Science, Vol. 1274 (Springer, Berlin,1997) 29-42. http://www.horb.org/[13] L.F.G. Sarmenta, Bayanihan: Web-Based Volunteer Computing Using Java, in:Proc. WWCA'98, LNCS, Vol. 1368 (Springer, Berlin, 1998) 444-461.http://www.cag.lcs.mit.edu/bayanihan/[14] L.F.G. Sarmenta, S. Hirano, S.A. Ward, Towards Bayanihan: Building anExtensible Framework for Volunteer Computing Using Java, in: Proc. ACMWorkshop on Java for High-Performance Network Computing (Palo Alto, 1998).[15] D. Skillicorn, J.M.D. Hill, W.F. McColl, Questions and answers about BSP,Scienti�c Programming , 6(3) (1997) 249-274.http://www.bsp-worldwide.org/ 16

www.manaraa.com

[16] H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh, U. Nagashima,Ninet: a Migratable Parallel Objects Framework using Java, in: Proc. ACMWorkshop on Java for High-Performance Network Computing (Palo Alto, 1998).[17] L. Vanhelsuwe, Create your own supercomputer with Java, JavaWorld, (Jan.1997). http://www.javaworld.com/jw-01-1997/jw-01-dampp.ibd.html

17

