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Abstract

Project Bayanihan is developing the idea of volunteer computing, which seeks to
enable people to form very large parallel computing networks very quickly by using
ubiquitous and easy-to-use technologies such as web browsers and Java. By uti-
lizing Java’s object-oriented features, we have built a flexible software framework
that makes it easy for programmers to write different volunteer computing applica-
tions, while allowing researchers to study and develop the underlying mechanisms
behind them. In this paper, we show how we have used this framework to write
master-worker style applications, and to develop approaches to the problems of
programming interface, adaptive parallelism, fault-tolerance, computational secu-
rity, scalability, and user interface design.

Key words: metacomputing, parallel and distributed computing, network of
workstations, heterogeneous computing, Java

1 Introduction

Bayanihan (pronounced “buy-uh-nee-hun”) is the name of an old Filipino
countryside tradition wherein neighbors would help a relocating family by
gathering under the family’s house and carrying it to its new location. As
such, the word bayanihan has come to mean a spirit of communal unity and
cooperation which makes seemingly impossible tasks possible through the con-
certed effort of many people with a common goal and a sense of unity. Project
Bayanihan seeks to bring the bayanihan spirit to the realm of global computing
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by developing the idea of volunteer computing, a form of metacomputing that
seeks to make it easy for even “ordinary people” with little technical knowl-
edge to cooperate in solving parallel problems by volunteering their comput-
ers’ processing power. By minimizing the effort and expertise required to add
worker nodes, volunteer computing maximizes the potential worker pool size
and minimizes setup time, making it possible to build world-wide computing
networks much larger and much more quickly than possible with other forms
of metacomputing.

The potentials of volunteer computing have been demonstrated by the success
of projects like distributed.net, which solved the RSA RC5-56 challenge
by employing over 4,000 volunteer teams world-wide, with a combined power
equivalent to that of about 26,000 high-end PCs [5]. Project Bayanihan aims
to take volunteer computing even further by developing web-based volunteer
computing systems where programmers can write platform-independent paral-
lel applications in Java and post them on the Web as applets so that volunteers
need only a web browser and a few mouse clicks to join a computation.

The possible benefits of such web-based volunteer computing systems are
many, ranging from the local to the global [13]. Being much easier and faster to
install than existing metacomputing systems, these systems can allow more or-
ganizations — including companies and universities that have so far lacked the
necessary expertise and time — to pool their existing workstations to provide
inexpensive supercomputing facilities for research and teaching. By volunteer-
ing their resources to each other, organizations can share and barter trade
processing power, creating new possibilities in global collaboration. With the
appropriate economic models and mechanisms, barter trading systems can
eventually turn into commercial systems where computing power becomes a
commodity that people can buy, sell, or trade. When Internet set-top boxes
and other information appliances become widely available, volunteer comput-
ing principles can also be used to build NOIAs — networks of information
appliances — that take advantage of the under-utilized processing power of
millions of CPUs sitting idle in users’ homes. Ultimately, web-based volunteer
computing has the potential to harness the computing power of the millions of
computers on the Internet, and use them towards solving hard computational
problems for worthy causes that serve the common good of local communities
and the world.

In order to make these potentials a reality, however, many challenging issues
need to be addressed. In this paper, we identify some of these issues, and
present a flexible software framework that fully exploits Java’s object-oriented
features to make it easy not only for programmers to build applications, but
also for researchers to study various issues and develop approaches to them.
We then show how we have used this framework in these two ways, and discuss
our results.
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2 Research Issues

Implementing and deploying real volunteer computing systems involves many
interesting and challenging technical questions and problems. These include:

o Accessibility. In order to maximize the potential work pool and minimize
setup time, a volunteer computing system must be accessible to as many
people as possible. It must be platform-independent, and must require as
little technical knowledge from volunteers as possible.

e Programmability. A volunteer computing system should provide a flexible
and easy-to-use programming interface that allows programmers to imple-
ment a wide variety of parallel applications easily and quickly.

e Adaptive Parallelism. Since volunteer nodes can have different kinds of
CPUs, and can join and leave a computation at any time, parallel program-
ming models for volunteer computing systems must be adaptively parallel.
Unlike traditional models, they cannot assume the existence of a fixed num-
ber of nodes, or depend on static timing information about the system.

e Fault-Tolerance and Computational Security. Like all large-scale meta
computing systems, volunteer computing systems must be able to tolerate
faults such as data loss or corruption from random hardware, software, and
communication failures. Unlike other metacomputing systems, however, vol-
unteer computing systems must also be resilient against intentional attacks
from malicious nodes. These include sabotage by nodes submitting erroneous

results, and spying on confidential data in commercial volunteer systems.

e Performance and Scalability. To be useful, a Java-based volunteer com-
puting system must ultimately provide its users with speedups better than,
or at least comparable to, other available metacomputing technologies. Po-
tential obstacles to this goal include Java’s traditionally slow execution
speed, communication overhead, and the lack of server scalability.

e User Interface Design. Unlike most conventional parallel systems, volun-
teer computing systems need good user interfaces to attract volunteers to
participate and encourage them to stay. In commercial systems, users would
also need good interfaces for submitting jobs and receiving results.

3 The Bayanihan Framework

To address these issues, we have built a software framework using Java and
HORB [12], a distributed object package similar to Sun’s RMI, but more
widely compatible. By using HORB to access remote objects transparently
without worrying about communication details, we are able to utilize object-
oriented techniques to enable programmers to experiment with different ap-
proaches to research issues by “mixing-and-matching” objects in various ways.
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Fig. 1. A Bayanihan system with worker and watcher clients.

3.1  System Design

The Bayanihan framework defines a set of interacting components that can be
extended and composed to build Bayanihan systems like that shown in Fig.
1. A Bayanihan system consists of many clients connected to one or more
servers. A client can either be a Java applet started from a web browser, or a
Java application started from the command line. There can be different kinds
of clients, such as worker clients for performing computation, and watcher
clients for viewing results and statistics. Each client has a chassis, which
contains an active engine object that communicates with a manager on the
server by exchanging data objects. A work engine, for example, may get work
data objects from the work manager, execute them, and return result data
objects when they are done. Data objects are generally polymorphic, and know
how to process themselves. Work data objects, for example, may implement
a doWork () method, which the work engine can call. Both the engine and the
data objects have associated G'UI objects that provide a user interface.

A server typically contains a commodity HTTP server for serving out Java
class files, and a command-line Java application that creates one or more prob-
lem objects representing different ongoing computations. Fach problem has a
program object which creates and controls manager and data pool objects
of different kinds. Figure 1, for example, shows a program object controlling
a work manager which takes care of distributing work and collecting results
from worker clients, and a watch manager which distributes results to watcher
clients. Each client connected to the server is represented by an advocate ob-
ject, which forwards the client’s remote calls to the appropriate manager.
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3.2 Using the Framework

Writing an application using the Bayanihan framework typically involves first
selecting and using existing generic library components (shown as shaded
boxes in Fig. 1), and then defining new application-specific components (shown
as double-bordered boxes) by extending existing base classes. In this way, ap-
plication programmers can write a wide variety of applications that share a
common programming model (e.g., master-worker) by using a common set of
pre-defined engine, manager, and data pool objects, and then defining different
data, GUI, and program objects according to the application.

The Bayanihan framework, however, also allows programmers and researchers
to change the generic objects themselves, making it easy for them to im-
plement and experiment with new generic functionality and mechanisms.
For example, researchers can experiment with performance optimization by
writing work manager objects with different scheduling algorithms. Similarly,
replication-based fault-tolerance mechanisms can be implemented by extend-
ing (i.e., subclassing) the manager and data pool objects. Programmers can
even implement entirely new parallel programming models by creating new
sets of engines, managers, and data pools.

By providing extensibility on these two levels — i.e., the applications and
generic mechanisms levels — the Bayanihan framework makes it easy for pro-
grammers and researchers not only to build a variety of applications, but also
to study the different technical issues in volunteer computing and develop pos-
sible approaches to them. In the remainder of this paper, we show how we are
using this two-level flexibility, and discuss our current results.

4 Building Applications: Programming and User Interface

4.1 Programming Interface

Although the Bayanihan framework can support other programming mod-
els, all our applications currently use the master-worker model shown in Fig.
2. In this model, the server’s program object creates a set of managers and
data pools, and fills the work pool with work data objects in its createWork()
method. Volunteer worker clients connected to the server run in a loop, repeat-
edly making remote calls to the getWork () method of their respective work ad-
vocates. Each advocate passes these calls to the work manager, adding its pro-
cess ID (pid) for identification, if desired. In response to a call to getWork(),
the work manager returns the next available uncompleted work data object in
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Fig. 2. Master-worker model components and methods.

the work pool. The work engine runs this work by calling its doWork () method,
and gets the result by calling getDoneMsg(). Finally, it sends the result back
to the work manager by calling the advocate’s sendDone () method.

As the work manager receives results from workers, it places the results in
the result pool and marks the corresponding work in the work pool done.
When all the work in the pool have been done, the work manager calls
its parent program object’s signalDone() method. By default, this method
calls createNextWork(), which sets up the next stage of the computation
by refilling the work pool and calling startNewWorkBatch(). In applications,
programmers can override createNextWork() or signalDone() to separate
blocks of parallel computation such that one block is guaranteed to be com-
puted completely before the other is started. This provides a simple form of
barrier synchronization. In our factoring application, for example, the program
object has a list of target numbers to be factored, and its createNextWork ()
method is used to move to the next target while making sure that all the
results from the previous one have been received.

Users can view results and statistics and control the computation through
watcher clients that communicate with the watch manager on the server. A
watcher client’s engine runs in a loop, periodically requesting the watch man-
ager for a list of new results, and passing these results to the watch GUI,
which displays them accordingly. The watcher client also allows the user to
send request objects to the watch manager via the makeRequest () method.
The watch manager forwards such requests to the program object, which then
reacts in an application-specific way. In our Mandelbrot rendering demo, for
example, the watch GUI (shown in Fig. 3) allows users to select a portion of
the screen to zoom in or out to, and sends corresponding request objects to the
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Fig. 3. A screen shot of the Mandelbrot worker and watcher applets.

server. When the program object receives the request, it responds by calling
reset () on the work and watch managers (causing the work and result pools
to be cleared), and calling its own createWork (request) method.

To write an application for this model, programmers need only to override
appropriate methods in the application-specific classes MWProgram, WorkData,
WorkGUI, ResultData, and WatchGUI. In this manner, we have written a va-
riety of applications, including factoring [13], distributed web-crawling [14],
RC5-64 decryption, and Mandelbrot rendering. Although seemingly simple
and limited to “embarrassingly parallel” applications, the master-worker model
is actually quite versatile and practical. Our Mandelbrot demo, for example,
represents parallel rendering applications used not only in the scientific com-
munity but in the media industry as well. Other potential applications include
some forms of data mining, Monte Carlo simulations, and any computations
in general where one wants to run the same sequential computation with
a large number of varying input combinations. Interestingly, because most
programmers today are still accustomed to sequential programming, a lot of
applications in the real world may actually fall into this category.

By extending the appropriate classes, we can also use the master-worker model
to support more complex programming models. For example, we have built a
sub-framework for parallel genetic algorithms that defines a generic work data
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class, GAWork, whose doWork() method calls abstract evaluation, selection,
reproduction, and mutation methods on a set of genes, and a generic pro-
gram class, GAProgram, whose createNextWork() method redistributes the
resulting genes into a new generation of work objects. By writing application-
specific subclasses of GAWork and GAProgram, we have successfully applied
the sub-framework to problems such as multivariable function optimization.
Currently, we are looking into implementing BSP [15], a growingly popular
programming model which makes programming more natural by providing
remote memory access and message-passing functions, but at the same time
makes implementation easier by specifying that these communication opera-
tions only take effect at the next global barrier synchronization. It should be
possible to implement BSP on top of the master-work model by defining a work
engine that allows work objects to make communication requests as they run,
and a work manager that collects these requests and performs them during in
signalDone() or createNextWork(). In the future, we may also implement
a coarse-grain dataflow programming model by extending the master-worker
components to support dependencies between work objects.

4.2 User Interface Design

The modular design of the Bayanihan framework allows application writers
to create and use different GUIs as desired, as long as these conform to the
interfaces required by the objects that will use them. Programmers can create
application-specific GUIs to view the same object in different ways, as well as
generic GUlIs to view different objects in the same way. Figure 3 shows some
examples from our Mandelbrot application. On the left is a watcher applet with
an application-specific MandelWatchGUI object that displays MandelResult
blocks. Colored borders corresponding to different workers give users a sense
for the parallelism in the computation. The GUI also allows users to zoom in
and out of selected areas, as described in Sect. 4.1. On the right is a worker
applet with a generic work engine GUI that provides simple controls for start-
ing, pausing, and stopping the work engine. The window above it is a generic
work GUI that displays status and timing information.

5 Developing Generic Mechanisms

In addition to making it easy to write applications, the Bayanihan frame-
work also makes it easy to develop generic mechanisms. In this section, we
demonstrate this flexibility by showing how we have used our framework to
initiate explorations into the issues of adaptive parallelism, fault-tolerance,
computational security, performance, and scalability.
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Fig. 4. Simple eager scheduling. (a) C calls getWork() while A and B are doing
works 1 and 2. (b) B finishes work 2 before A finishes work 1; B gets work 1 too.

5.1 Adaptive Parallelism

The current master-worker programming model implementation employs a
simple form of adaptive parallelism sometimes called eager scheduling [4]. As
shown in Fig. 4, each work object has a done flag which is set when a worker
returns the result for that object. The work objects are stored in a circular
list, with a pointer keeping track of the next available uncompleted work. In
Figure 4(a), for example, the nextUnDoneWork pointer is pointing to work
3 after works 1 and 2 have been assigned to engines A and B respectively.
Thus, when engine C calls getWork(), it receives work 3. Since workers call
getWork() as soon as they finish their current work, faster workers will tend
to call getWork() more often, and will thus get a bigger share of the total
work. In this way, we get a simple form of dynamic load balancing.

Moreover, since the list is circular, nextUnDoneWork can eventually wrap
around and point to previously assigned but uncompleted work, allowing a
piece of work to be reassigned to other workers. This “eager” behavior guar-
antees that slow workers do not cause bottlenecks — fast workers with nothing
left to do will simply bypass slow ones, redoing work themselves if necessary.
It also provides a basic form of crash-tolerance. In Fig. 4(b), for example, we
see that when B finishes work 2 and calls getWork (), it receives work 1, which
has not been marked done because A has crashed (or is simply slow). In this
way, computation can go on as long as at least one processor is still alive. In
fact, even if all the processors crash, the computation can continue as soon as
a new processor becomes available.

Currently, we are also examining other forms of adaptive parallelism that can

be used with the master-worker programming model. For example, we have
written MultiWorkEngine and MultiWorkManager subclasses that implement
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Fig. 5. Two approaches to fault-tolerance. (a) Majority Voting. (b) Spot-checking

a getMultiWork () function for prefetching multiple packets of work, and have
used them in our distributed web-crawler application to improve performance
by hiding communication latency [14]. We are also using them to study the
effects of changing work sizes depending on worker speeds.

5.2 Fault-Tolerance and Computational Security

By extending the eager scheduling work manager and work pool objects as
shown in Fig. 5, we have implemented two approaches to protecting against
faults and sabotage: majority voting and spot-checking.

Majority voting works by requiring that at least a majority m of up to r
results from different workers for the same work object have the same value.
We implement it by using a new subclass of MWWorkPool, FTWorkPool, where
the done flag of a work object remains unset as long as a majority agreement
has not been reached and less than r results from different PIDs have been
received. If r results are received without reaching a majority agreement, all
the r results are invalidated, and the work object is redone. In Fig. 5(a), for
example, works 0 and 3 have reached a majority agreement and are marked
done, while works 1 and 2 are still considered undone.

Spot-checking, shown in Fig. 5(b), works as follows: at the beginning of each
new batch of work, the SCWorkManager (a subclass of FTWorkManager) ran-
domly selects a work object from the work pool and precomputes its result.
Then, whenever a work engine calls getWork(), the work manager returns
this spotter work with probability p. In this way, the work manager can check
the trustworthiness of a worker by comparing the result it returns with the
known result. If the results do not match, the offending worker is blacklisted as
untrustable, and the work manager backtracks through all the current results,

10
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Table 1
Preliminary results from fault-tolerance experiments.
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invalidating any results dependent on results from the offending worker.

Table 1 shows results from using these two fault-tolerance mechanisms. In this
experiment, we created a saboteur work engine that always corrupts results in
a fixed way. We then ran the Mandelbrot application on the spiral range (see
Sect. 5.3.1), with 5 good workers and a varying number of saboteurs. To keep
the pool of saboteurs from being completely eliminated in spot-checking, we
disabled blacklisting, and allowed caught nodes to reconnect after a 1 second
delay. For each configuration, we ran 10 rounds, measuring the average running
time and the average error rate (err). From these, we computed the efficiency
of each configuration by first multiplying the ideal time (measured with 5
good workers, no saboteurs and no fault-tolerance) by the fraction of correct
answers (1 — err), and then dividing the result by the actual running time.
This estimates how efficiently the good workers are being utilized towards
producing correct final answers.

Majority voting performed as expected, having an error rate close to the the-
oretical expected value of f*(3 — 2f) for 2-out-of-3 voting (where f is the
fraction of workers who are saboteurs, and where we assume that saboteurs
agree on their answers). Although this error rate is large for the values of f
shown, it should improve significantly in more realistic situations where f is
small, since it is proportional to f%. The bigger problem with voting is its
efficiency, which, as shown, is at best only about 50% since all the work has
to be done at least twice even when there are no saboteurs. In this respect,
spot-checking performed more promisingly. As shown, its efficiency loss was
only about p when the number of saboteurs was small, and, thanks to back-
tracking, its error rates remained relatively low — even when there were more
saboteurs than good workers. In a real system where blacklisting is enabled, we
can expect even lower error rates. As shown, saboteurs were being caught at
a high rate — as many as 64 saboteurs every 31 s in one case. This means that
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unless saboteurs can somehow assume a very large number of false identities
(e.g., by faking IP addresses or digital certificates) and switch between them
dynamically and quickly — a highly unlikely scenario — they would quickly get
eliminated, and the error rate would decrease rapidly in time.

Although very encouraging, these results are clearly just the beginning of much
theoretical, experimental, and developmental research that can be done in this
area. Some research questions include how well spot-checking would work in
cases where saboteurs do not always give bad answers, and how we can avoid
unnecessarily blacklisting “innocent” nodes that just suffer temporary glitches.
The most important challenge, however, is that of applying these mechanisms
in real applications. Spot-checking may be sufficient for some classes of appli-
cations where a small percentage of bad answers may be acceptable, or can be
screened out. These include image rendering, where a few scattered bad pix-
els would be acceptable, some statistical computations, where outliers can be
detected and either ignored or double-checked, and genetic algorithms, where
bad results are naturally screened out by the system. Most scientific applica-
tions, however, assume 100% reliability. For these, it maybe useful to combine
voting, spot-checking, backtracking, and blacklisting to shrink the error rate
as much as possible. In the future, we also plan to explore the use of tradi-
tional and novel security mechanisms such as checksums, digital signatures,
encrypted computation, and dynamic obfuscation [13] to reduce the error rate
further by making it difficult for saboteurs to falsify results in the first place.

5.3  Performance and Scalability

5.3.1 Relative Speedup and Absolute Performance

Figure 6 shows results from running the Mandelbrot application on 17 200MHz
Pentium Pro machines (1 server and 16 workers) connected by 10Mbit Ether-
net, running Windows NT 4.0, Netscape 4.03 on the clients, and Sun’s JDK
1.1.6 JIT compiler on the server. In this experiment, the target work was an
800x800 pixel array, divided into 256 square chunks. To represent different
computation granularities, we tried four different target ranges with differ-
ent average depths (iterations per pixel). For comparison, ideal speedup was
computed using the sequential computation speed on a single unpartitioned
800x800 array with maximum depth. As shown, we get good speedup for large
granularities — achieving 91% and 85% efficiency with 16 workers at depths
2048 and 1037, respectively. As the granularity decreases, however, communi-
cation and other overheads begin to dominate, limiting efficiency to only 42%
and 1% with 16 workers at depths 198 and 3, respectively. Possible approaches
to this problem (which is not unique to Java-based volunteer computing) in-
clude reducing overhead, and adaptively changing the problem granularity.

12

www.manaraa.com



/ — jded
100 / speedup
%\ 80 —e— black field
T (depth 2048)
o 60 1 .
= spiral
‘g 40 | (depth 1037)
& —— whole range
20 + (depth 198)
0 —o— Dbluefield
0 4 8 12 16 (depth 3)
workers

Fig. 6. Speedup measurements for the Mandelbrot application.

Table 2
Absolute Java and C speeds for the Mandelbrot demo on a 200MHz Pentium Pro.
speed (10° iters/s) |relative speed
Netscape 4 JT on NT4.0 6.94 1.00
gcc 1.40 0.20
gcc -Obest 8.86 1.28

Table 2 shows a comparison of absolute speeds from sequential Java and native
C executions of the same Mandelbrot code. Here, we see that with just-in-time
(JIT) compilation, Java was actually faster than unoptimized C code, while
only slightly slower than optimized C code (compiled with djgpp’s gcc [§]
using the -O option that produced the best result). In another test, our RC5
code was about 8 times slower than distributed.net’s version. While not
as impressive, this is still notable, considering that distributed.net’s code
was hand-optimized using processor-specific assembly code, while Java does
not even directly support some necessary operations such as bitwise rotates.

5.3.2  Server Scalability

Due to security restrictions, Java applets can only communicate with the web
server from which they were downloaded. This forces browser-based volunteer
computing networks into star topologies which have high congestion and lim-
ited scalability. To address this problem, we have developed a simple volunteer
server system that volunteers with HT'TP servers on their own machines can
download and run as a Java application. This application creates a generic
VSProblem object which, like other problem objects, contains data pools and
managers for serving worker and watcher clients. Unlike other problem ob-
jects, however, VSProblem’s createWork() method does not create new work
on its own, but instead gets groups of work data from the main server. Cor-
respondingly, its signalDone() method sends the results back to the main
server, and its createNextWork() method requests more work.
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Fig. 7. Using volunteer servers. (a) Slow links result in unnecessary delays and idling.

(b) Volunteer servers help by exploiting communication parallelism and locality.

Table 3
Running the Mandelbrot application on a volunteer server.
time () main server | main server | volunteer server on fast link,
with 5 workers | onfastlink |ondow link|  main server on slow link
without watcher 5 198 125
with watcher 5 233 124

Figure 7 shows how volunteer servers can help improve a system’s performance
and scalability. Consider the scenario shown in Fig. 7(a), where some volun-
teers are slowed down by delays due to congestion or some other constraint
of the server link (e.g., the server may be in a different country). In such a
situation, we can improve overall running time by having the workers con-
nect indirectly through volunteer servers with faster links (e.g., uncongested
servers, or servers in their own countries), as shown in Fig. 7(b). Table 3 shows
results from an experiment simulating these scenarios using a 28.8Kbps mo-
dem link for the slow link, and 10Mbit Ethernet for the fast link. Note that
although the computation took only 5s with the main server on a fast link, it
took almost 200s when the main server was placed on a slow link, as workers
were forced to wait idly while the server received their results and sent them
new work through the slow link. To address this problem, we used one volun-
teer server to act as a “cache” between the main server and the workers, using
the fast link as shown in Fig. 7(b) to allow them to work at full speed without
idling. As shown, this reduced the total running time to 125s, of which the
first 5s were spent by the workers to do the computation, and the remaining
120's by the volunteer server to send all the results back to the server through
the slow link. The volunteer server also allowed watchers to be added without
further congesting the slow link and slowing down the computation.

In general, volunteer servers enable us to overcome congestion and long laten-
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cies by exploiting locality and parallelism in communications. Other potential
applications of volunteer servers include forming server pools for handling large
numbers of clients, and building networks with non-star topologies.

6 Conclusion: Related, Present, and Future Work

Project Bayanihan joins a growing number of projects enabling people to use
Java for web-based parallel computing. Most early projects such as ATLAS [3],
and JPVM [9], and many newer projects such as IceT [11], Java// [7], Ninflet
[16], and others [10,1,2], use Java applications. These are less restricted than
applets, but require some technical expertise and setup effort from volunteer
users. Projects like Bayanihan that support the use of applets and web browsers
to maximize accessibility seem to be fewer, but have also been growing in
number. Early systems include simple ones such as DAMPP [17], and more
complex general-purpose ones such as Charlotte [4], and Javelin [6].

Project Bayanihan’s approach is to maximize flexibility by taking full advan-
tage of object-oriented techniques. To this end, we have developed a general-
purpose framework that allows programmers and researchers to build systems
by simply “mixing-and-matching” interacting objects. We have demonstrated
the effectivity of this framework by successfully using it to build a variety of
master-worker styles applications, and to initiate explorations into several in-
teresting research areas. The results from our explorations give a very positive
outlook on the feasibility and practicality of volunteer computing systems,
and encourage us to do further research in the field by writing more applica-
tions, implementing more programming models, and developing more generic
mechanisms for supporting volunteer computing.
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